Особливості архітектури



Скачати 142.38 Kb.
Дата конвертації02.12.2016
Розмір142.38 Kb.
Лекція № 3

Тема: Особливості архітектури: UNIX і Linux
План

1. Базова архітектура UNIX

2. Склад архітектури Linux

2.1 Призначення ядра Linux та його особливості

2.2 Модулі ядра

2.3 Особливості системних бібліотек

3. Особливості архітектури Windows XP

4. Компоненти режиму ядра Windows

5. Компоненти режиму користувача Windows

6. Об'єктна архітектура Windows



1. Базова архітектура UNIX

UNIX є прикладом досить простої архітектури ОС. Більша частина функціональ­ності цієї системи міститься в ядрі, ядро спілкується із прикладними програмами за допомогою системних викликів. Базова структура класичного ядра UNIX зобра­жена на рис. 2.3.



Система складається із трьох основних компонентів: підсистеми керування процесами, файлової підсистеми та підсистеми введення-виведення.

Підсистема керування процесами контролює створення та вилучення проце­сів, розподілення системних ресурсів між ними, міжпроцесову взаємодію, керу­вання пам'яттю.

Файлова підсистема забезпечує єдиний інтерфейс доступу до даних, розташо­ваних на дискових накопичувачах, і до периферійних пристроїв. Такий інтерфейс є однією з найважливіших особливостей UNIX. Одні й ті самі системні виклики використовують як для обміну даними із диском, так і для виведення на термінал або принтер (програма працює із принтером так само, як із файлом). При цьому файлова система переадресовує запити відповідним модулям підсистеми введен­ня-виведення, а ті — безпосередньо периферійним пристроям. Крім того, файлова підсистема контролює права доступу до файлів, які значною мірою визначають привілеї користувача в системі.

Підсистема введення-виведення виконує запити файлової підсистеми, взаємо­діючи з драйверами пристроїв. В UNIX розрізняють два типи пристроїв: сим­вольні (наприклад, принтер) і блокові (наприклад, жорсткий диск). Основна відмінність між ними полягає в тому, що блоковий пристрій допускає прямий

доступ. Для підвищення продуктивності роботи із блоковими пристроями вико­ристовують буферний кеш — ділянку пам'яті, у якій зберігаються дані, зчитані з диска останніми. Під час наступних звертань до цих даних вони можуть бути от­римані з кеша.

Сучасні UNIX-системи дещо відрізняються за своєю архітектурою.


  • У них виділено окремий менеджер пам'яті, відповідальний за підтримку вір­туальної пам'яті.

  • Стандартом для реалізації інтерфейсу файлової системи є віртуальна файло­ва система, що абстрагує цей інтерфейс і дає змогу організувати підтримку різних типів файлових систем.

  • У цих системах підтримується багатопроцесорна обробка, а також багатопотоковість.

Базові архітектурні рішення, такі як доступ до всіх пристроїв введення-виведення через інтерфейс файлової системи або організація системних викликів, за­лишаються незмінними в усіх реалізаціях UNIX.

2. Склад архітектури Linux

В ОС Linux можна виділити три основні частини:

4- ядро, яке реалізує основні функції ОС (керування процесами, пам'яттю, введенням-виведенням тощо);


  • системні бібліотеки, що визначають стандартний набір функцій для вико­ристання у застосуваннях (виконання таких функцій не потребує переходу в привілейований режим);

  • системні утиліти (прикладні програми, які виконують спеціалізовані задачі).

2.1 Призначення ядра Linux і його особливості

Linux реалізує технологію монолітного ядра. Весь код і структури даних ядра пе­ребувають в одному адресному просторі. У ядрі можна виділити кілька функціо­нальних компонентів [63].

Планувальник процесів — відповідає за реалізацію багатозадачності в системі (обробка переривань, робота з таймером, створення і завершення процесів, пе­ремикання контексту).

Менеджер пам'яті — виділяє окремий адресний простір для кожного процесу і реалізує підтримку віртуальної пам'яті.

Віртуальна файлова система — надає універсальний інтерфейс взаємодії з різ­ними файловими системами та пристроями введення-виведення.


  • Драйвери пристроїв — забезпечують безпосередню роботу з периферійними пристроями. Доступ до них здійснюється через інтерфейс віртуальної фай­лової системи.

  • Мережний інтерфейс — забезпечує доступ до реалізації мережних протоколів і драйверів мережних пристроїв.

Підсистема міжпроцесової взаємодії — пропонує механізми, які дають змогу різним процесам у системі обмінюватися даними між собою. Деякі із цих підсистем є логічними компонентами системи, вони завантажу­ються у пам'ять разом із ядром і залишаються там постійно. Компоненти інших підсистем (наприклад, драйвери пристроїв) вигідно реалізовувати так, щоб їхній код міг завантажуватися у пам'ять на вимогу. Для розв'язання цього завдання Linux підтримує концепцію модулів ядра.

2.2 Модулі ядра

Ядро Linux дає можливість на вимогу завантажувати у пам'ять і вивантажувати з неї окремі секції коду. Такі секції називають модулями ядра (kernel modules) [ЗО] і виконують у привілейованому режимі. Модулі ядра надають низку переваг.



  • Код модулів може завантажуватися в пам'ять у процесі роботи системи, що спрощує налагодження компонентів ядра, насамперед драйверів.

  • З'являється можливість змінювати набір компонентів ядра під час виконання: ті з них, які в цей момент не використовуються, можна не завантажувати у пам'ять.

  • Модулі є винятком із правила, за яким код, що розширює функції ядра, відпо­відно до ліцензії Linux має бути відкритим. Це дає змогу виробникам апарат­ного забезпечення розробляти драйвери під Linux, навіть якщо не запланова­но надавати доступ до їхнього вихідного коду.

Підтримка модулів у Linux складається із трьох компонентів.

  • Засоби керування модулями дають можливість завантажувати модулі у па­м'ять і здійснювати обмін даними між модулями та іншою частиною ядра.

  • Засоби реєстрації драйверів дозволяють модулям повідомляти іншу частину ядра про те, що новий драйвер став доступним.

  • Засоби розв'язання конфліктів дають змогу драйверам пристроїв резервува­ти апаратні ресурси і захищати їх від випадкового використання іншими драйверами.

Один модуль може зареєструвати кілька драйверів, якщо це потрібно (на­приклад, для двох різних механізмів доступу до пристрою).

Модулі можуть бути завантажені заздалегідь — під час старту системи (заван­тажувальні модулі) або у процесі виконання програми, яка викликає їхні функції. Після завантаження код модуля перебуває в тому ж самому адресному просторі, що й інший код ядра. Помилка в модулі є критичною для системи.



2.3 Особливості системних бібліотек

Системні бібліотеки Linux є динамічними бібліотеками, котрі завантажуються у пам'ять тільки тоді, коли у них виникає потреба. Вони виконують ряд функцій:



  • реалізацію пакувальників системних викликів;

  • розширення функціональності системних викликів (до таких бібліотек нале­жить бібліотека введення-виведення мови С, яка реалізує на основі системних викликів такі функції, як printfO);

+ реалізацію службових функцій режиму користувача (сортування, функції об­робки рядків тощо).

Застосування користувача

Застосування користувача в Linux використовують функції із системних бібліотек і через них взаємодіють із ядром за допомогою системних викликів.



3. Особливості архітектури: Windows XP

У цьому розділі ми розглянемо основні компоненти Windows XP, які зображені на рис. 2.4.



Деякі компоненти Windows XP виконуються у привілейованому режимі, інші компоненти — у режимі користувача. Ми почнемо розгляд системи з компонентів режиму ядра.



4. Компоненти режиму ядра

У традиційному розумінні ядро ОС містить усі компоненти привілейованого режиму, однак у Windows XP поняття ядра закріплене тільки за одним із цих компонентів.



Рівень абстрагування від устаткування

У Windows XP реалізовано рівень абстрагування від устаткування (у цій системі його називають HAL, hardware abstraction layer). Для різних апаратних конфігурацій фірма Microsoft або сторонні розробники можуть постачати різні реалізації HAL.

Хоча код HAL є дуже ефективним, його використання може знижувати про­дуктивність застосувань мультимедіа. У такому разі використовують спеціаль­ний пакет DirectX, який дає змогу прикладним програмам звертатися безпосе­редньо до апаратного забезпечення, обминаючи HAL та інші рівні системи.

Ядро

Ядро Windows XP відповідає за базові операції системи. До його основних функ­цій належать:

♦ перемикання контексту, збереження і відновлення стану потоків;


  • планування виконання потоків;

♦ реалізація засобів підтримки апаратного забезпечення, складніших за засоби HAL (наприклад, передача керування оброблювачам переривань).

Ядро Windows XP відповідає базовим службам ОС і надає набір механізмів для реалізації політики керування ресурсами.

Основним завданням ядра є якомога ефективніше завантаження процесорів системи. Ядро постійно перебуває в пам'яті, послідовність виконання його інст­рукцій може порушити тільки переривання (під час виконання коду ядра багато­задачність не підтримується). Для прискорення роботи ядро ніколи не перевіряє правильність параметрів, переданих під час виклику його функцій.

Windows XP не можна віднести до якогось певного класу ОС. Наприклад, хо­ча за функціональністю ядро системи відповідає поняттю мікроядра, для самої ОС не характерна класична мікроядрова архітектура, оскільки у привілейовано­му режимі виконуються й інші її компоненти.



Виконавча система

Виконавча система (ВС) Windows XP (Windows XP Executive) - це набір ком­понентів, відповідальних за найважливіші служби ОС (керування пам'яттю, про­цесами і потоками, введенням-виведенням тощо).

Компонентами ВС є передусім базові засоби підтримки. Ці засоби використо­вують у всій системі.


  • Менеджер об'єктів — відповідає за розподіл ресурсів у системі, підтримуючи їхнє універсальне подання через об'єкти.

  • Засіб локального виклику процедур (LPC) — забезпечує механізм зв'язку між процесами і підсистемами на одному комп'ютері.

Інші компоненти ВС реалізують найважливіші служби Windows XP. Зупини­мося на деяких із них.

  • Менеджер процесів і потоків — створює та завершує процеси і потоки, а також розподіляє для них ресурси.

  • Менеджер віртуальної пам'яті — реалізує керування пам'яттю в системі, на­самперед підтримку віртуальної пам'яті.

  • Менеджер введення-виведення керує периферійними пристроями, надаючи іншим компонентам апаратно-незалежні засоби введення-виведення. Цей ме­неджер реалізує єдиний інтерфейс для драйверів пристроїв.

  • Менеджер кеша - керує кешуванням для системи введення-виведення. Часто використовувані блоки диска тимчасово зберігаються в пам'яті, наступні опе­рації введення-виведення звертаються до цієї пам'яті, внаслідок чого підви­щується продуктивність.

  • Менеджер конфігурації — відповідає за підтримку роботи із системним реєст­ром (registry) — ієрархічно організованим сховищем інформації про налашту­вання системи і прикладних програм.

  • Довідковий монітор захисту — забезпечує політику безпеки на ізольованому комп'ютері, тобто захищає системні ресурси.

Драйвери пристроїв

У Windows XP драйвери не обов'язково пов'язані з апаратними пристроями. За­стосування, якому потрібні засоби, доступні в режимі ядра, завжди варто оформ­ляти як драйвер. Це пов'язане з тим, що для зовнішніх розробників режим ядра доступний тільки з коду драйверів. Докладніше реалізацію драйверів Windows XP буде розглянуто в розділі 15.



Віконна і графічна підсистеми

Віконна і графічна підсистеми відповідають за інтерфейс користувача — роботу з вікнами, елементами керування і графічним виведенням.



  • Менеджер вікон — реалізує високорівневі функції. Він керує віконним виве­денням, обробляє введення з клавіатури або миші й передає застосуванням повідомлення користувача.

  • Інтерфейс графічних пристроїв (Graphical Device Interface, GDI) — склада­ється з набору базових операцій графічного виведення, які не залежать від конкретного пристрою (креслення ліній, відображення тексту тощо).

  • Драйвери графічних пристроїв (відеокарт, принтерів тощо) — відповідають за взаємодію з контролерами цих пристроїв.

Під час створення вікон або елементів керування запит надходить до мене­джера вікон, який для виконання базових графічних операцій звертається до GDI. Потім запит передається драйверу пристрою, затим — апаратному забезпеченню через HAL.

5. Компоненти режиму користувача

Компоненти режиму користувача не мають прямого доступу до апаратного забез­печення, їхній код виконується в ізольованому адресному просторі. Більша части­на коду режиму користувача перебуває в динамічних бібліотеках, які у Windows називають DLL (dynamic-link libraries).



Бібліотека системного інтерфейсу

Для доступу до засобів режиму ядра в режимі користувача необхідно звертатися до функцій бібліотеки системного інтерфейсу (ntdli.dll). Ця бібліотека надає набір функцій-перехідників, кожній з яких відповідає функція режиму ядра (системний виклик). Застосування зазвичай не викликають такі функції безпосередньо, за це відповідають підсистеми середовища.

Підсистеми середовища

Підсистеми середовища надають застосуванням користувача доступ до служб операційної системи, реалізуючи відповідний АРІ. Ми зупинимося на двох під­системах середовища: Win32 і POSIX.



Підсистема Win32, яка реалізує Win32 АРІ, є обов'язковим компонентом Win­dows ХР. До неї входять такі компоненти:

  • процес підсистеми Win32 (csrss.exe), що відповідає, зокрема, за реалізацію текстового (консольного) введення-виведення, створення і знищення проце­сів та потоків;

  • бібліотеки підсистеми Win32, які надають прикладним програмам функції Win32 АРІ. Найчастіше використовують бібліотеки gdi32.dll (низькорівневі графічні функції, незалежні від пристрою), user32.dll (функції інтерфейсу ко­ристувача) і kernel32.dll (функції, реалізовані у ВС і ядрі). Після того як застосування звернеться до функції Win32 АРІ, спочатку буде викликана відповідна функція з бібліотеки підсистеми Win32.

Розглянемо ва­ріанти виконання такого виклику.

  1. Якщо функції потрібні тільки ресурси її бібліотеки, виклик повністю вико­нується в адресному просторі застосування без переходу в режим ядра.

  2. Якщо потрібен перехід у режим ядра, з коду бібліотеки підсистеми виконується системний виклик. Так відбувається у більшості випадків, наприклад під час створення вікон або елементів керування.

  3. Функція бібліотеки підсистеми може звернутися до процесу підсистеми Win32, при цьому:

♦ коли потрібна функціональність режиму ядра, процес підсистеми Win32 виконує системний виклик аналогічно до варіанта 2.

Зазначимо, що до виходу Windows NT 4.0 (1996 рік) віконна і графічна під­системи працювали в режимі користувача як частина процесу підсистеми Win32 (тобто виклики базових графічних функцій Win32 АРІ оброблялися відповідно до варіанта 3). Надалі для підвищення продуктивності реалізацію цих підсистем було перенесено в режим ядра [14].



Підсистема POSIX працює в режимі користувача й реалізує набір функцій, ви­значених стандартом POSIX 1003.1. Оскільки застосування, або прикладні програ­ми (applications), написані для однієї підсистеми, не можуть використати функції інших, у POSIX-програмах не можна користуватися засобами Win32 АРІ (зокре­ма, графічними та мережними функціями), що знижує важливість цієї підсистем-и. Підсистема POSIX не є обов'язковим компонентом Windows XP.

Наперед визначені системні процеси

Ряд важливих процесів користувача система запускає автоматично до закінчення завантаження.

Розглянемо деякі з них.



  • Менеджер сесій (Session Manager, smss.exe) створюється в системі першим. Він запускає інші важливі процеси (процес підсистеми Win32, процес ре­єстрації в системі тощо), а також відповідає за їхнє повторне виконання під час аварійного завершення.

♦ Процес реєстрації в системі (winlogon.exe) відповідає за допуск користувача
в систему. Він відображає діалогове вікно для введення пароля, після введен­
ня передає пароль у підсистему безпеки і в разі успішної його верифікації за­
пускає засоби створення сесії користувача.

  • Менеджер керування службами (Service Control Manager, services.exe) від­повідає за автоматичне виконання певних застосувань під час завантаження системи. Застосування, які будуть виконані при цьому, називають службами (services). Такі служби, як журнал подій, планувальник задач, менеджер дру­кування, постачають разом із системою. Крім того, є багато служб сторонніх розробників; так зазвичай реалізовують серверні застосування (сервери баз даних, веб-сервери тощо).

Застосування користувача

Застосування користувача можуть бути створені для різних підсистем середови­ща. Такі застосування використовують тільки функції відповідного АРІ. Викли­ки цих функцій перетворюються в системні виклики за допомогою динамічних бібліотек підсистем середовища.



6. Об'єктна архітектура Windows XP

Керування ресурсами у Windows XP реалізується із застосуванням концепції об'єк­тів. Об'єкти надають універсальний інтерфейс для доступу до системних ресурсів, для яких передбачено спільне використання, зокрема таких, як процеси, потоки, фай­ли і розподілювана пам'ять. Концепція об'єктів забезпечує важливі переваги.



  • Імена об'єктів організовані в єдиний простір імен, де їх легко знаходити.

  • Доступ до всіх об'єктів здійснюється однаково. Після створення нового об'єкта або після отримання доступу до наявного менеджер об'єктів повертає у засто­сування дескриптор об'єкта (object handle).

  • Забезпечено захист ресурсів. Кожну спробу доступу до об'єкта розглядає під­система захисту — без неї доступ до об'єкта, а отже і до ресурсу, отримати не­можливо.

Менеджер об'єктів відповідає за створення, підтримку та ліквідацію об'єктів, задає єдині правила для їхнього іменування, збереження й забезпечення захисту. Підсистеми середовища звертаються до менеджера об'єктів безпосередньо або че­рез інші сервіси ВС. Наприклад, під час запуску застосування підсистема Win32 викликає менеджер процесів для створення нового процесу. В свою чергу мене­джер процесів звертається до менеджера об'єктів для створення об'єкта, що пред­ставляє процес.

Об'єкти реалізовано як структури даних в адресному просторі ядра. При пере­завантаженні системи вміст усіх об'єктів губиться.

Особливості отримання доступу до об'єктів із процесів режиму користувача буде розглянуто в розділі 3.

Структура заголовка об'єкта

Об'єкти складаються з двох частин: заголовка і тіла об'єкта. У заголовку міститься інформація, загальна для всіх об'єктів, у тілі — специфічна для об'єктів конкрет­ного типу.

До атрибутів заголовка об'єкта належать:


  • ім'я об'єкта і його місце у просторі імен;

  • дескриптор захисту (визначає права, необхідні для використання об'єкта);

  • витрата квоти (ціна відкриття дескриптора об'єкта, дає змогу регулювати кіль­кість об'єктів, які дозволено створювати);

  • список процесів, що дістали доступ до дескрипторів об'єкта.

Менеджер об'єктів здійснює керування об'єктами на підставі інформації з їхніх заголовків.

Об'єкти типу

Формат і вміст тіла об'єкта визначається його типом. Новий тип об'єктів може бу­ти визначений будь-яким компонентом ВС. Існує визначений набір типів об'єктів, які створюються під час завантаження системи (такі об'єкти, наприклад, відпові­дають процесам, відкритим файлам, пристроям введення-виведення).

Частина характеристик об'єктів є загальними для всіх об'єктів цього типу. Для зберігання відомостей про такі характеристики використовують спеціальні об'єкти типу (type objects). У такому об'єкті, зокрема, зберігають:


  • ім'я типу об'єкта («процес», «потік», «відкритий файл» тощо);

♦ режими доступу (залежать від типу об'єкта: наприклад, для файла такими ре­жимами можуть бути «читання» і «запис»).

Об'єкти типу недоступні в режимі користувача.



Методи об'єктів

Коли компонент ВС створює новий тип об'єкта, він може зареєструвати у диспетче­рі об'єктів один або кілька методів. Після цього диспетчер об'єктів викликає ці ме­тоди на певних етапах життєвого циклу об'єкта. Наведемо деякі з методів об'єктів:



  • open — викликається при відкритті дескриптора об'єкта;

  • close — викликається при закритті дескриптора об'єкта;

  • del ete — викликається перед вилученням об'єкта з пам'яті. Покажчики на код реалізації методів також зберігаються в об'єктах типу.

Простір імен об'єктів

Усі імена об'єктів у ВС розташовані в глобальному просторі імен, тому будь-який процес може відкрити дескриптор об'єкта, вказавши його ім'я. Простір імен об'єк­тів має ієрархічну структуру, подібно до файлової системи. Аналогом каталогу файлової системи в такому просторі імен є каталог об'єктів. Він містить імена об'єктів (зокрема й інших каталогів). Перелічимо деякі наперед визначені іме­на каталогів:

♦ Device — імена пристроїв введення-виведення;

♦ Driver — завантажені драйвери пристроїв;



  • ObjectTypes — об'єкти типів.

Простір імен об'єктів, як і окремі об'єкти, не зберігається після перезаванта­ження системи.


База даних захищена авторським правом ©lecture.in.ua 2016
звернутися до адміністрації

    Головна сторінка