Для вступу на освітньо-кваліфікаційний рівень магістра зі спеціальності «Інформаційно-комунікаційні технології» ● Теорія ймовірностей та математична статистика



Скачати 94.79 Kb.
Дата конвертації01.01.2017
Розмір94.79 Kb.
Перелік дисциплін, які виносяться

для вступу на освітньо-кваліфікаційний рівень магістра

зі спеціальності «Інформаційно-комунікаційні технології»
Теорія ймовірностей та математична статистика

Диференціальні рівняння

Алгебра та геометрія

Фінансова математика



Програми дисциплін

Теорія ймовірностей та математична статистика


Випадкові події

Відносна частота випадкової події, ймовірність в дискретному просторі елементарних подій. Класичне означення ймовірності. Повна група подій. Геометрична ймовірність. Сумісні і несумісні події. Теореми додавання сумісних і несумісних подій. Залежні і незалежні події. Теореми множення залежних і незалежних подій. Формула повної ймовірності. Формула Байєса.



Випадкові величини

Загальне поняття випадкової величини та її функції розподілу. Поняття і розподіл дискретних випадкових величин. Основні дискретні розподіли та їх властивості (біноміальний, геометричний та пуассонівський розподіли). Абсолютно неперервні розподіли. Щільність розподілу і її властивості. Основні абсолютно неперервні розподіли та їх властивості (нормальний, показниковий, рівномірний розподіли). Розподіл дискретного випадкового вектора. Щільність розподілу абсолютно неперервного випадкового вектора. Рівномірний і нормальний розподіли на площині. Умовний розподіл. Розподіл функцій від випадкових величин. Розподіл суми (різниці), частки і добутку двох випадкових величин. Поняття і властивості математичного сподівання дискретної випадкової величини. Математичне сподівання біноміального, геометричного та пуассонівського розподілів. Поняття і властивості дисперсії дискретної випадкової величини. Дисперсії біноміального, геометричного та пуассонівського розподілів. Математичне сподівання довільної і абсолютно неперервної випадкових величин. Математичне сподівання і дисперсія рівномірного, показникового та нормального розподілів. Моменти вищих порядків. Поняття і властивості умовного математичного сподівання. Поняття і властивості коефіцієнта кореляції.



Граничні теореми теорії ймовірностей

Нерівність Чебишова. Закон великих чисел. Теореми Хінчина (без доведення), Чебишова, Бернуллі, Маркова. Локальна теорема Лапласа. Інтегральна теорема Лапласа. Поняття і властивості характеристичних функцій випадкових величин. Теореми Бохнера Хінчина, Марцинкевича, Пойа (без доведення). Характеристичні функції основних розподілів. Поняття і властивості твірних функцій випадкових величин. Центральна гранична теорема для однаково розподілених випадкових величин. Граничні теореми в схемі Бернуллі.



Елементи вибіркової теорії

Предмет та основні задачі математичної статистики. Ймовірнісно-статистична модель. Вибірки. Емпірична функція розподілу. Варіаційний ряд і статистичний ряд розподілу вибірки. Гістограма і полігон вибірки. Граничні теореми для емпіричної функції розподілу (без доведення). Теоретичні та вибіркові моменти. Збіжність за ймовірністю та асимптотична нормальність вибіркових моментів. Розподіл порядкових статистик.



Оцінювання невідомих параметрів розподілу. Точкові оцінки невідомих параметрів розподілу

Незміщені та умотивовані оцінки. Поняття і властивості оптимальних оцінок. Поняття функції правдоподібності, внеску вибірки, функції інформації. Нерівність Рао-Крамера. Ефективні оцінки. Експоненціальні моделі. Достатні статистики. Критерій факторизації. Теорема Рао-Блекуела-Колмогорова. Повні достатні статистики і рівняння незміщеності. Метод максимальної правдоподібності. Метод моментів. Інтервальне оцінювання невідомих параметрів розподілу. Розподіл деяких функцій від нормально розподілених випадкових величин. Інтервальні оцінки та методи їх побудови. Інтервали надійності для невідомих параметрів нормального розподілу. Асимптотичний інтервал надійності для оцінки невідомої ймовірності події.



Перевірка статистичних гіпотез

Загальні поняття про статистичні гіпотези та статистичні критерії. Основні принципи побудови критеріїв узгодженості. Критерії узгодженості про вигляд функції розподілу Колмогорова, Мізеса. Критерії узгодженості про вигляд функції розподілу Пірсона. Критерій незалежності. Перевірка параметричних гіпотез. Критерій Неймана-Пірсона. Критерії значущості та інтервальне оцінювання.


Література

1. Пугачев В. С. Теория вероятностей и математическая статистика / В. С. Пугачев. – М. : Физ.мат.лит., 2002. – 410 с.

2. Гихман И. И. Теория вероятностей и математическая статистика / И. И. Гихман, А. В. Скороход, М. И. Ядренко – К.: Вища шк., 1979. – 408 с.

3. Чистяков В. П. Курс теории вероятностей / В. П. Чистяков – М. : Наука, 1982. – 256 с.


Диференціальні рівняння
Загальні поняття про диференціальні рівняння, типи їх розв’язків. Порядок
диференціального рівняння. Приклади задач, які призводять до поняття диференціального рівняння

Основні поняття та означення. Загальний інтеграл диференціального рівняння. Диференціальне рівняння – математична модель реального процесу.



Диференціальні рівняння 1-го порядку з
відокремлюваними змінними і рівняння, які зводяться до них

Загальний інтеграл рівняння з відокремленими змінними. Інтегрування рівнянь з відокремлюваними змінними. Рівняння з автомодельною правою частиною. Однорідні рівняння першого порядку. Поняття однорідної функції. Рівняння першого порядку з дробово-раціональним аргументом у правій частині.



Лінійні диференціальні рівняння 1-го порядку і
методи їх розв'язання. Диференціальні рівняння в повних диференціалах

Лінійне однорідне диференціальне рівняння 1-го порядку. Метод Бернуллі-Ейлера знаходження розв'язку лінійного неоднорідного рівнян­ня. Метод Лаґранжа інтегрування лінійних неоднорідних рівнянь 1-го порядку. Рівняння Бернуллі та методи його інтегрування. Рівняння звідні до лінійних. Інтегрування рівняння Ріккаті.



Теорема існування і єдиності розв’язку задачі Коші для нормального диференціального рівняння 1-го порядку. Формулювання теореми та її обґрунтування. Доведення теореми. Диференціальні рівняння
1-го порядку не розв’язні відносно похідної. Рівняння Клеро і Лагранжа

Застосування методу введення параметра для розв'язання неявних рівнянь. Поняття особливого розв'язку. Рівняння Клеро. Рівняння Лаґранжа.



Рівняння вищих порядків та методи їх розв’язання

Рівняння вищих порядків, що не містять шуканої функції. Пониження порядку рівнянь, в які явно входить шукана функція, а незалежна змінна відсутня. Інтегрування однорідних рівнянь вищих порядків. Інтегрування лінійних рівнянь вищих методом пониження.



Лінійні диференціальні рівняння го порядку. Властивості їх розв'язків.
Методи розв'язання лінійних диференціальних рівнянь го порядку зі сталими коефіцієнтами

Лінійні однорідні диференціальні рівняння та властивості їх розв'язків. Поняття характеристичного многочлена. Структура загального розв'язку одно­рідного рівняння. Метод підбору (невизначених коефіцієнтів) знаходження розв'язку лінійного неоднорідного рівняння. Метод Лаґранжа інтегрування лінійних неоднорідних рівнянь вищих порядків.



Системи диференціальних рівнянь 1-го порядку. Лінійні системи диференціальних рівнянь і властивості їх розв'язків. Методи розв'язання лінійних однорідних систем диференціальних рівнянь зі сталими коефіцієнтами

Інтегрування систем методом зведення до рівнянь вищих порядків. Лінійні однорідні системи та властивості їх розв'язків.

Побудова характеристичного рівняння лінійної однорідної системи диференціа­льних рівнянь першого порядку. Загальний розв'язок лінійної однорідної системи. Метод Лаґранжа інтегрування неоднорідної системи диференціальних рівнянь.

Стійкість розв’язків диференціальних рівнянь. Означення стійкості по Ляпунову. Типи точок спокою

Поняття асимптотичної стійкості та стійкості за Ляпуновим. Типи точок спокою.


Література

1. Лавренюк С. П. Курс диференціальних рівнянь / С. П. Лавренюк. – Львів : Вид. НТЛ., 1997. – 215 с.

2. Понтрягин Я.С. Обыкновенные дифференциальные уравнения / Я. С. Понтрягин. – М. : Наука, 1974.

3. Петровский И. Г. Лекции по теории обыкновенных дифференциальных уравнений / И. Г.Петровский. – М. : Наука, 1984.

Алгебра та геометрія
Матриці та визначники. Крамерові системи рівнянь

Дії над матрицями. Перестановки та підстановки. Означення та властивості визначника -го порядку. Розклад визначника за елементами рядка. Визначник добутку матриць. Вироджені та невироджені матриці. Обернена матриця. Правило Крамера. Метод Гауса. Матричний метод.



Векторна алгебра

Лінійні операції над векторами. Базис та координати. Проекція вектора на вісь. Поділ відрізка у заданому відношенні. Скалярний, векторний, мішаний добутки та їх властивості.



Прямі та площини

Основні типи рівнянь прямої на площині. Жмуток прямих. Рівняння площини. Зведення лінійного рівняння до нормального вигляду. Основні рівняння прямої у просторі. Відстань між мимобіжними прямими.



Криві та поверхні 2-го порядку

Канонічні рівняння еліпса, гіперболи, параболи. Ексцентриситет, директриси та дотичні. Лінійні перетворення системи координат на площині. Зведення загального рівняння 2-го порядку до канонічного вигляду. Поверхні обертання. Канонічні рівняння поверхонь 2-го порядку.


Многочлени

Алгебраїчна та тригонометрична форми комплексного числа. Операції над комплексними числами. Формула Муавра. Добування кореня. Первісні корені. Ділення з остачею. Найбільший спільний дільник. Алгоритм Евкліда. Теорема Безу. Схема Горнера. Кратні корені. Основна теорема алгебри. Формули Вієта. Многочлени з дійсними коефіцієнтами. Межі дійсних коренів. Теорема Штурма. Симетричні многочлени. Результант. Дискримінант.



Лінійні простори

Базис та координати. Вимірність. Лема про лінійні комбінації. Зв’язок між базисами. Лінійні підпростори. Лінійні оболонки та гіперплощини. Сума та перетин. Прямі суми. Ізоморфізм. Терема про ізоморфні лінійні простори. Евклідовий простір. Ортонормований базис. Ортогоналізація системи векторів. Матриця Грама. Ортогональне доповнення. Ортогональна проекція ветора на підпростір. Нерівності Коші-Буняковського та Мінковського. Унітарні простори. Ермітові матриці. Унітарні матриці.



Лінійні системи загального вигляду

Базисний мінор. Ранг матриці. Теорема Кронекера-Капеллі. Максимальна лінійно незалежна підсистема. Підпростір розв’язків однорідної системи. Загальний розв’язок однорідної системи. Лінійний многовид розв’язків неоднорідної системи. Метод найменших квадратів.



Лінійні перетворення

Матриці лінійного перетворення в різних базисах та їх зв’язок. Група лінійних перетворень. Ранг, образ, ядро та дефект. Власні значення та власні вектори. Спряжене лінійне перетворення. Самоспряжені лінійні перетворення. Ортогональні перетворення. Жорданова нормальна форма матриці лінійного перетворення.



Квадратичні форми

Спряжений простір. Взаємні базиси. Матриця білінійної форми. Квадратична форма, її ранг. Закон інерції. Полілінійні функції. Тензори.



Алгебраїчні структури

Група. Підгрупа. Нормальні дільники. Фактор-група. Гомоморфізм груп. Абельові групи. Кільце. Ідеал. Фактор-кільце. Гомоморфізм кілець. Класифікація полів. Розширення полів. Скінченні поля.



Література

1. Завало С. Т. Курс алгебри / С. Т. Завало. – К. : Вища школа, - 1988.

2. Воеводин В. В. Линейная алгебра / В. В. Воеводин. – М. : Наука, - 1974.

3. Кострикин А. И. Введение в алгебру / А. И. Кострикин. – М. : Наука, - 1977.

Фінансова математика

Просте нарахування відсотків

Поняття відсоткової ставки. Нарощення і дисконтування за простими відсотками. Зв’язок простої відсоткової та облікової ставки відсотків. Банківське дисконтування.



Застосування простого нарахування відсотків

Застосування простих ставок у фінансових розрахунках. Облік векселів. Принцип фінансової еквівалентності. Зміна умов контрактів, консолідація векселів. Врахування інфляції при простому нарахуванні.



Складне нарахування відсотків

Реінвестиція під прості відсотки. Нарощення і дисконтування за складними відсотками. Номінальна ставка. Ставка ефективності. Неперервні відсотки. Врахування інфляції при складному нарахуванні.



Еквівалентність фінансових розрахунків

Еквівалентність відсоткових ставок. Змінювані відсоткові ставки. Середні відсоткові ставки. Принцип стабільності ринку. Еквівалентність простих і складних відсотків.



Застосування складного нарахування відсотків

Застосування складних відсотків у фінансових розрахунках. Планування погашення довгострокової заборгованості. Кредитні операції. Зміна умов контрактів, консолідація платежів.



Розрахунок параметрів загальної ренти

Теорія рент. Типи рент. Дискретні ренти. Приведення рент різного типу до простої ренти. Розрахунок нарощеної та теперішньої вартості ренти. Розрахунок параметрів рент.



Застосування потоків платежів

Ренти з неперервним нарахуванням відсотків. Вічні ренти. Застосування теорії рент в кредитно-фінансових операціях. Консолідація та конверсія фінансових рент.



Цінні папери

Ринок цінних паперів (загальні відомості). Первинний і вторинний ринок цінних паперів. Облігації. Визначення вартості облігації. Акції. Визначення цін акцій. Опціони, страхові аннуітети. Ф’ючерсні контракти.



Основи інвестицій

Характеристики ефективності інвестицій. Планування інвестиційного процесу. Визначення ринкового портфеля. Оптимізація портфеля цінних паперів.


Література

1. Бондарев Б. В. Финансовая математика. Учебное пособие / Б. В. Бондарев, И. Л. Шурко. – Донецк : Кассиопея, 1999. – 164 с.



2. Бугір М. К. Математика для економістів / . М. К. Бугір. – Тернопіль : Підручники та посібники. – 1998. – 192 с.

3. Бугрій М. І. Основи фінансово-кредитного аналізу / М. І. Бугрій. – Львів : Видавничий центр ЛНУ ім. І. Франка, 2006. – 375 с.


База даних захищена авторським правом ©lecture.in.ua 2016
звернутися до адміністрації

    Головна сторінка